Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites.
نویسندگان
چکیده
Maximum-likelihood methods based on models of codon substitution accounting for heterogeneous selective pressures across sites have proved to be powerful in detecting positive selection in protein-coding DNA sequences. Those methods are phylogeny based and do not account for the effects of recombination. When recombination occurs, such as in population data, no unique tree topology can describe the evolutionary history of the whole sequence. This violation of assumptions raises serious concerns about the likelihood method for detecting positive selection. Here we use computer simulation to evaluate the reliability of the likelihood-ratio test (LRT) for positive selection in the presence of recombination. We examine three tests based on different models of variable selective pressures among sites. Sequences are simulated using a coalescent model with recombination and analyzed using codon-based likelihood models ignoring recombination. We find that the LRT is robust to low levels of recombination (with fewer than three recombination events in the history of a sample of 10 sequences). However, at higher levels of recombination, the type I error rate can be as high as 90%, especially when the null model in the LRT is unrealistic, and the test often mistakes recombination as evidence for positive selection. The test that compares the more realistic models M7 (beta) against M8 (beta and omega) is more robust to recombination, where the null model M7 allows the positive selection pressure to vary between 0 and 1 (and so does not account for positive selection), and the alternative model M8 allows an additional discrete class with omega = d(N)/d(S) that could be estimated to be >1 (and thus accounts for positive selection). Identification of sites under positive selection by the empirical Bayes method appears to be less affected than the LRT by recombination.
منابع مشابه
Evolutionary features of 8K (KDa) silencing suppressor protein of Potato mop-top virus
The cysteine-rich 8K protein of Potato mop-top virus (PMTV) suppresses host RNA silencing. In this study, evolutionary analysisof 8K sequences of PMTV isolates was studied on the basis of nucleotide and amino acid sequences. Twenty-one positively selected sites were identified in 8K codingregions. Recombination events were found in the 8K of PMTV isolates with a rate of 1.8. Totally 30 haplotyp...
متن کاملAccuracy and power of the likelihood ratio test in detecting adaptive molecular evolution.
The selective pressure at the protein level is usually measured by the nonsynonymous/synonymous rate ratio (omega = dN/dS), with omega < 1, omega = 1, and omega > 1 indicating purifying (or negative) selection, neutral evolution, and diversifying (or positive) selection, respectively. The omega ratio is commonly calculated as an average over sites. As every functional protein has some amino aci...
متن کاملEvaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level.
Detecting positive Darwinian selection at the DNA sequence level has been a subject of considerable interest. However, positive selection is difficult to detect because it often operates episodically on a few amino acid sites, and the signal may be masked by negative selection. Several methods have been developed to test positive selection that acts on given branches (branch methods) or on a su...
متن کاملDetecting amino acid sites under positive selection and purifying selection.
An excess of nonsynonymous over synonymous substitution at individual amino acid sites is an important indicator that positive selection has affected the evolution of a protein between the extant sequences under study and their most recent common ancestor. Several methods exist to detect the presence, and sometimes location, of positively selected sites in alignments of protein-coding sequences...
متن کاملSimulation study of the reliability and robustness of the statistical methods for detecting positive selection at single amino acid sites.
Inferring positive selection at single amino acid sites is of biological and medical importance. Parsimony-based and likelihood-based methods have been developed for this purpose, but the reliabilities of these methods are not well understood. Because the evolutionary models assumed in these methods are only rough approximations to reality, it is desirable that the methods are not very sensitiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 164 3 شماره
صفحات -
تاریخ انتشار 2003